# NUCLEATION IN SYNOPTICALLY FORCED CIRRUS

**Ruei-Fong Lin** 

**University of Maryland Baltimore County** 

David O'C. Starr

NASA Goddard Space Flight Center

**Jens Reichardt** 

**University of Maryland Baltimore County** 

Paul J. DeMott

Colorado State University

# Cold Cirrus T<-40°C

Following Meyers et al. (1992)

# Homogeneous Nucleation

 Homogeneous freezing of concentrated aqueous solution droplets at water subsaturated conditions.

# Heterogeneous Nucleation

- Activation of IN in concentrated aqueous solution droplets at water subsaturated conditions.
- Deposition nucleation

?
$$N_{nuc} = N_0 \exp[\beta(S_i - S_i^*)]$$

$$N_0 = 1$$
 liter<sup>-1</sup>

S<sub>i</sub>: supersaturation ratio wrt. ice

$$\beta = \beta$$
 (T, w, IN species)  
 $S_i^* = S_i^*$  (T, w, IN species)

$$N_{nuc} = N_0 \exp[\beta(S_i - S_i^*)]$$

Meyers et al (1992): Deposition-Condensation Freezing

$$-7 > T > -20$$
°C,  $0.25 > S_i > 0.02$ 

 $\beta \sim 12.96$ ,  $S_i^* \sim 0.0493$  (hereafter, M92)

Immersion freezing Parcel Model Studies:  $w = 0.04 \text{ m s}^{-1}$ 

freezing

 $T = -60^{\circ}C$ 

 $T = -40^{\circ}C$ 

(DeMott)



## $(S_i^*, \beta)$

β

Homogeneous freezing

(Heterogeneous) nucleation in upper troposphere

M92 ~(0.05, 13)

#### Cirrus cloud measured over northern Sweden.



Reichardt et al. (2002), GRL, 29, 10.1029/2002GL014836.

## 1D Cirrus Simulation with Explicit Microphysics

Ice particle trajectories



Nucleation pulse (Sassen and Dodd, 1989; Khvorostyanov et al., 2001) at the very top of each cloud episode.

Nucleation lasts for about 15 min.

Homogeneous freezing





#### LONG NUCLEATION DURATION

micron

N<sub>i</sub> generated at the cloud top does not provide sufficient information of N<sub>i</sub> in the mass bearing regime

## 1D Cirrus Simulation with Explicit Microphysics



# Average cloud properties are sensitive to mid-cloud nucleation

solid: control run

dashed: mid-cloud nucleation switched off







# Summary

- Synoptically forced cirrus: long duration of nucleation period. N<sub>i</sub> at nucleation zones does not provide sufficient information of N<sub>i</sub> in the cloud mass bearing regions.
- Preliminary results show that the average cloud properties do not respond to S<sub>i</sub>\* and β monotonically.
   Sensitivity tests must cover a reasonable "2-dimensional" range of these two parameters.
- For the limited range of (S<sub>i</sub>\*, β) studied here, the average cloud properties are more sensitive to S<sub>i</sub>\*. Smaller S<sub>i</sub>\* entails less excess water vapor, more cloud ice, larger nucleation zone, and more ice crystals.

## Following ascending parcels









$$N_{nuc} = N_0 \exp[\beta(S_i - S_i^*)]$$

## Homogeneous freezing (from Parcel Model Studies)





Caveat: May underestimate N<sub>nuc</sub>